
ED 273 438

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

PUB DATE
CONTRACT
NOTE
AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 046 878

Lampert, Magdalene
Knowing, Doing, and Teaching Multipaication.
Occasional Paper No. 97.
Michigan State Univ., East LanEing. Inst. for
Research on Teaching.
Office of Educational Research /Id Improvement (ED),
Washington, D.C.
Jun 86
400-81-0014
67p.
Institute for Research on Teaching, College of
Education, Michigan State University, 252 Erickson
Hall, East Lansing, MI 48824 ($5.75).
Guides - Classroom Use - Guides (For Teachers) (052)

MF01/PC03 Plus Postage.
Computation; *Concept Formation; *Concept Teaching;
Educational Theories; Elementary Education;
*Elementary School Mathematics; Mathematical
Concepts; *Mathematics Instruction; *Multiplication;
*Teaching Methods

ABSTRACT
This essay clarifies what it means to know

mathematics by examining ways of knowing multiplication and explores
what those ways of knowing imply for the teaching and learning of
mathematics in schools. It reviews the perennial argument about
whether computational skill or conceptual understanding should guide
the school curriculum. A mathematical analysis of the process of
multiplication, a conceptual analysis of mathematical cognition, and
speculative research on classroom teaching and learning are presented
to support this argument. Included are descriptions of several
lessons in which children are being taught about multiplying large
numbers. The descriptions focus on the connections that can be made
in teaching among students' naive, concrete, computational, and
conceptual knowledge. (Author)

***************
Reproducti

***************

******************************,4*************************

ons supplied by EDRS are the best that can be made
from the original document.

********************************************************



Occasional Paper No. 97

KNOWING, DOING, AND TEACHING
MULTIPLICATION

Magdalene Lampert

ii

U DEPARTMENT OP EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

lemia dOcument has Peen reproduced as
received from the person or organization
originating it

CI Minor changes have been made to improve
reproduction Quality

Points of view or opinions stated in thisdOCu

ment do not necessarily represent official
OERI position or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."



Occasional Paper No. 97

KNOWING, DOING, AND TEACHING
MULTIPLICATION

Magdalene Lampert

Published By

The Institute for Research on Teaching
252 Erickson Hall

Michigan State University
East Lansing, Michigan 48824-1034

June 1986

This work is sponsored in part by the Institute for Research on Teaching,
College of Education, Michigan State University. The Institute for Research
on Teaching is funded primarily by the Office of Educational Research and
Improvement, United States Department of Education. The opinions expressed in
this publication do not necessarily reflect the position, policy, or endorse-
ment of the Office or the Department. (Contract No. 400-81-0014)

3



Institute for Research on Teaching

The Institute for Research on Teaching was founded at Michigan State
University (MSU) in 1976 by the National Institute of Education. Following a
nationwide competition in 1981, the NIE awarded a second five-year contract to
MSU. Funding is also received from other agencies and foundations for
individual research projects.

The IRT conducts major research projects aimed at improving classroom
teaching, including studies of classroom management strategies, student social-
ization, the diagnosis and remediation of reading difficulties, and teachereducation. IRT researchers are also examining the teaching of specific school
subjects such as reading, writing, general mathematics, and science and are
seeking to understand how factors outside the classroom affect teacher decision
making.

Researchers from such diverse disciplines as educational r.sychology,
anthropology, sociology, and philosophy cooperate in conducting IRT research.
They join forces with public school teachers who work at the IRT as half-time
collaborators in research, helping to design and plan studies, collect data,
analyze and interpret results, and disseminate findings.

The IRT publishes research reports, occasional papers, conference pro-
ceedings, a newsletter for practitioners, and lists and catalogs of IRT publica-
tions. For more information, to receive a list or catalog, and/or to be placed on
the IRT mailing list to receive the newsletter, please write to the IRT Editor,
Institute for Research on Teaching, 252 Erickson Hall, Michigan State Univer-
sity, East Lansing, Michigan 48824-1034.

Co-Directors: Jere E. Brophy and Andrew C. Porter

Associate Directors: Judith E. Lanier and Richard S. Prawat

Editorial Staff
Editor: Sandra Gross
Assistant Editor: Sally B. Pratt



Abstract

This essay clarifies what it means to know mathematics by examining ways

of knowing multiplication and explores what those ways of knowing imply for

the teaching and learning of mathematics in schools. The author reviews the

perennial argument about whether computational skill or conceptual under

standing should guide the school curriculum. A mathematical analysis of the

process of multiplication, a conceptual analysis of mathematical cognition,

and the authors' speculative research on classroom teaching and learning are

presented to support this argument. Included are descriptions of several

lessons in which children are being taught about multiplying large numbers.

The descriptions focus on the connections that can be made in teaching among

students' naive, concrete, computational, and conceptual knowledge.



KNOWING, DOING, AND TEACHING MULTIPLICATION'

Mtgdalene Lampert2

Ever since schools have existed in this country, Americans have debated

about what children should be learning in them. A significant part of that

debate has addressed the subject of mathematics and pits the proponents of

teaching computational skill against the advocates of fostering conceptual

understanding. Because computation is an aspect of mathematical knowledge

that is familiar to most teachers and parents, they are likely to support its

place in the school curriculum. Most mathematicians, in contrast, see compu

tation as an almost insignificant branch of their subject and, thus, are

likely to believe that it is less important to be skilled in computation than

to understand how abstract mathematical principles can be used to analyze and

solve problems. Two different views of what it means to know mathematics

underlie this disagreement. Developments in curriculum and instruction have

exacerbated the conflicts between these views and teachers are often left to

figure out acceptable policies and practices for themselves.

This paper will clarify what it means to know mathematics by examining

ways of knowing a particular piece of the mathematics curriculum--multidigit

multiplication--and explore what those ways of knowing imply for how mathe

matics might be taught and learned in schools. As a !foundation for this

'The production of this paper was partially funded by the Children's Tele
vision Workshop with support from the National Science Foundation. The opin
ions expressed in this paper do not necessarily reflect the position, policy,
or endorsement of either the Children's Television Workshop or the National
Science Foundation. The author would like to acknowledge the contribution of
Jacqueline Frese to this essay. The lesson descriptions are based on her
careful observations and note taking.

2Magdalene Lampert coordinates the Dilemma Management in Teaching Project and
is an associate professor of teacher education at Michigan State University.



analysis, the mathematical meaning of the process and structure of

multiplication will be considered along with theories of mathematical knowl-

edge being developed in the field of cognitive science. These theoretical

perspectives will be complemented by descriptions of fourth-grade mathematics

lessons I taught. These descriptions are intended to inform a consideration

of instructional strategies that do not favor either computation or concepts

but take an active approach to teaching students about the connection between

these two ways of knowing mathematics. The classroom research reported here

is not oriented toward conclusions about how to teach the multiplication of

large numbers, however. It is intended to be conjectural, that is, to outline

an approach to instruction based on a broad definition of mathematical knowl-

edge that seems to be worth trying (cf. Noddings, 1985).

Multidigit multiplication was chosen as the focus of this paper because

it has not been examined much by cognitive scientists or math educators and

because it seems to be a watershed topic for learners. Whereas from a mathe-

matical point of view the principles underlying the process of multidigit mul-

tiplication can be associated with fundamental concepts in our number system,

from the school learner's point of view, it often is the place where arith-

metic stops making sense. The rules for getting through the procedure make

less and less intuitive sense as the numbers get larger, and little in the

conventional curriculum is oriented toward helping students to understand what

they are doing.

What Does It Mean to Know Multiplication?

One can interpret the question asked by an arithmetical expression like

9 x 5 as a counting question. In this sense, multiplication is an operation

used for counting a total quantity when the quantity can be organized into a

number of groups, each of which has the same number of members. So 9 x 5
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means t1 number of the total of nine groups, each containing five members.

The multiplicative composition of groups derives from the operation of addi-

tion; if addition is applied to tom sets, one numbering a and the other num-

bering b, and there is one-to-one correspondence between the members of these

sets (i.e., if a = b, then the total of a + b can be given by the number 2a

(or 2b). So if there are nine groups, each having one-to-one correspondence

with a group having five members, then the total would be given by

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 or 9 x 5.

One need not know the meaning of multiplication to know that 9 x 5 = 45,

however. It has been considered appropriate for children to memorize such

rombinations for pairs of numbers up to 10 x 10 or 12 x 12. It is not knowl-

edge about the multiplication of these relatively small whole numbers that

will conLern us here. Multiplying numbers larger than 10 or 12 (combinations

that are unlikely to be memorized) is the operation under consideration. Even

though the term is imprecise, because 10, 11 and 12 all have more than one

digit, I shall reter to this operation as "multidigit" multiplication.

Given a facility with the basic combinations, what are the ways in which

one might know that 8 x 76 = 608? Or be able to figure out any other multi-

digit multiplication without memorizing? In order to do that, one needs to

have some knowledge about how to take the larger numbers apart, operate on

them, and put them back together in legitimate ways. A classification of

kinds of knowledge proposed by Leinhardt (1985) provides a useful outline for

thinking about the different kinds of knowledge that could be used to do that.

In her analysis of the process of getting to know subtraction, she uses four

different categories to define kinds of mathematical knowledge: naive, con-

crete, computational, and principled conceptual. Each of these terms could be

used to describe a way of knowing how to figure out the meaning of an expres-

sion like 8 x 76.
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Naive Knowledge

Naive knowledge consists of applie:!, real-life knowledge that is not the

result of direct instruction. Other cognitive scientists have called it

"intuitive" and distinguish it from the formal knowledge taught in school

(Bamberger, 1979; Posner, Strike, Rewson, & Gertzog, 1982). This kind of

knowledge is derived from and bound to a context in which the knower is con-

fronted with problems to solve that matter to him or her. It is sometimes

thought of as the source of misconceptions, which are incorrrect theories con-

structed by a learner based on limited experiences (Anderson and Smith, 1983;

Roth, 1985), the measure of correctness being derived from the abstract con-

text of an academic discipline. The classification of knowledge as naive in

this paper is not meant to imply that it is either correct or incorrect, how-

ever. In fact, the definition itself suggests that its correctness must be

judged according to the context in which it is applied. The term "naive" will

be used here only in its formal sense to mean that is is not the result of

formal instruction; it is not meant to imply that the knower is a naive

person.

In the case of multidigit multiplication, this kind of knowledge is

nicely illustrated by Scribner's (1984) study of the "working intrIlligence"

that milkmen use to pack and price various products to be delivered from a

dairy. The workers Scribner observed faced several situations in the course

of their workday in which they were required to do multidigit multiplications

to get the job done. They invented context-specific decomposition and recom7

position procedures to make their work easier. Skilled loaders of delivery

cases learned the value of various configurations of containers--one layer of

half-pints is 16, two rows of quarts is 8, etc.--and used this compositional

structure to figure out how to fill cases with multiples of items without

counting out each item. If they needed 35 half-pints to fill an order, for
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example, they would know to fill two layers and then add 3 more half-pints on

top. Delivery men solved billing problems using a similar process of taking

numbers apart and putting them back together to serve their purposes. To

figure out the cost of 98 half-pints, for Pxample, one strategy was to take

two times the case price (a case held 48 half pints) and add two times the

unit price. These invented algorithms for multidigit multiplication actually

saved considerable time and energy on the job when compared with the proce-

dures used by workmen who followed the more conventional rules for arith-

metical computation they had learned in school.

Concrete Knowledge

Concrete mathematical knowledge requires the actual manipulation of ob-

jects to find an answer. This kind of knowledge might be used, for example,

if the multiplication 8 x 76 were given by 8 equal piles of money, in which

each pile contained 7 ten-dollar bills and 6 one-dollar bills. Finding 8 x 76

then would mean putting the 8 piles together to get a total of 56 ten-dollar

bills and 48 one-dollar bills. The multiplication is complete at this point,

but to translate the "answer" into a more conventional form, 40 of the one-

dollar bills could be traded for 4 tens, making a total of 60 tens; if

hundred-dollar bills were available, these could be traded for 6 hundreds,

making a total of 608 dollars.

In contrast to naive procedure, concrete procedures are based on the

actual manipulation of objects. No manipulation of symbols and no mental pro-

cesses other than trading and counting according to given rules are required

to find the answer. (Practice with this sort of grouping, trading, and count-

ing has been advocated by Z. P. Dienes, 1960, as the most appropriate intro-

duction for children to arithmetic procedures.) Concrete multiplication

requires knowing that "multiplied by" or the symbol x indicates the physical

5
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operation of pushing a collection of equal piles of something together and

that you get the "answer" by counting the total number. Getting a familiar

looking answer when the number of objects involved is larger that 10 requires

knowing that you can trade and knowing the comparative values of the objects

involved. Being able to group and trade objects does not necessarily indicat

either an ability to record those activities symbolically or an appreciation

of the mathematical principles they represent.

Computational Knowledge

Another kind of mathematical knowledge about multiplication is computa

tional. It entails doing things with numerical symbols according to a set of

procedural rules. In order to compute 8 x 76 in the conventionally accepted

form, for example, one would need to know it should be written as follows:

76

x 8

Then, beginning with the numerals on the right, one would multiply 8 x 6 to

get 48 (by virtue of having memorized that combination), put the 8 down under

the right hand column and "carry" the 4 up on top of the 7. Now, multiplying

8 x 7 to get 56, one adds the 7 and writes down 60 to the left of the 8, so

that the answer looks like this:

76

x 8
608

In order to do this correctly, one need not know that the 7 means 70 because

of its placement to the left of the 6, nor that one is actually adding 40 to

560 (the product of 8 and 70) to get the 600 in 608. What is important here

is knowing which operation (multiply or add) to do to which pair of digits in

what order, and where to place the answer, and to have memorized a store of

associations between pairs of digits and their products (the multiplication

6
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tables). One can check on one's accuracy visually, by knowing, for example,

that multiplications of two-digit numerals by one-digit numerals always pro-

duce answers with at most, three digits. So if one's work looked like this,

76
x 8

5648

one might go back and try to figure out what went wrong. (These sorts of

visual "procedural critics" have been studied extensively by Brown & Burton,

1978, in their attempts to describe the thinking that might explain mistakes

children make in subtraction.) Note that it is not the judgment that 5,648 is

too large a quantity to make a sensible answer to 8 x 76 that results from

computational knowledge. It is an assessment of the way the answer Zooks that

is employed here, rather than an understanding of what it means. Procedural

critics, although superficial, can provide the basis for competent performance

of arithmetic computation.

Principled Conceptual Knowlede.

Using the fourth kind of knowledge in Leinhardt's scheme--principled

conceptual--to do multiplication requires understanding some fundamental math-

ematical principles. It underlies the invention of computational procedures

such as the familiar one described above. But someone who has this kind of

understanding might also invent different ways to figure out 76 x 8; for

example: "76 is one more than 75 which is 3 times 25; to get 8 x 75, then, 8

times 25 is 200, and 3 times 200 is 600; now we need 8 x 1 which is 8. So

76 x 8 is 608." In order to invent such a procedure, one needs to know that

8 x 75 is the same as 8 x 25 x 3 and that it is the same as 200 x 3. One

needs to know that you can take 76 apart into 75 and 1, multiply each part by

8 and then put it back together. With this sort of conceptual knowledge, one

would also know that there are many other ways to figure out 76 x 8 because

there are many ways to "take apart" 76 and 8 (Greeno, Riley, & Gelman, 1984).

7
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To approach the problem another way, for example, one might think: "76

is 4 less than 80; 8 times 80 is 640; 8 times 4 tm 32; 76 times 8 ift the dif-

fernce between 640 and 32 or 608." Why can one do that? Why do both of

these methods "work" in the sense that they get the same answer that was

arrived at using other kinds of knowledge about multiplication? What does one

need to know to be sure that these procedures are "allowed" mathematically?

This invention of procedures is what Noddings (1985) calls "the search for

algorithms," which calls upon an understanding of the structure of the opera-

tion coupled with computational ability and the sort of mathematical insight

that comes from naive or concrete knowledge. It is, in a sense, knowledge

about what one knows about numbers and how they work that is used in this

domain to carry out arithmetical operations. It is not necessary to know

principles to Uff any of these procedures correctly, if one is taught the

steps to follow, but one does need to know the principles to invent the steps

or to explain why they work.

The principles underlying a conceptual knowledge of multidigit multipli-

cation include knowing that

1. the way digits are lined up in a number has meaning, that is,
the 7 in 76 means 70 because it is to the left of the 6
(place value);

2. numbers are composed by addition and can be decomposed in many
different ways without changing the total quantity, that
is, 76 can be thought of as 70 + 6 or 75 + 1 or
25 + 25 + 25 + 1 or 38 + 38 etc. (additive composition);

3. the elements of these additive compositions can be grouped and
added in different ways without affecting the total quan-
tity, that is, 25 + 25 + 25 + 1 can be recomposed as
50 + 26 or 75 + 1 or 25 + 51, etc. (associativity of addi-
tion);

4. the order in which additions are done does not affect the final
sum, that is, 70 + 6 gives the same total as 6 + 70 (commu-
tativity of addition);

13
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5. numbers are also composed by multiplication in the sense that
they can be decomposed into equal groups, that is, 76 can
be thought of as 38 + 38 which is 2 x 18, or it can he
thought of as 19 + 19 + 19 + 19 which is 4 x 19 or even
as 25 + 25 + 25 + 1 which is (3 x 25) + 1 (multiplicative
composition);

6. the elements of those multiplicative compositions can be
grouped and multiplied in different ways without affect-
ing the total quantity, that is,
76 = (2 x 2) x 19 = 4 x 19 or 76 = 2 x (2 x 19) = 2 x 38
(associativity of multiplication);

7. the order in which multiplications are done does not affect
the final product, that is, 4 x 19 gives the same product
as 19 x 4 (commutativity of multiplication); and

8. numbers to be multiplied can be decomposed additively, each of
the elements operated on separately, and the product ob-
tained from recomposing the "partial products", that is,

76 = 70 + 6
70 x 8 = 560
6 x 8 = 48

so
76 x 8 = 560 + 48 = 608
or

76 = 25 + 25 + 25 + 1
25 x 8 = 200
1 x 8 = 8

so

76 x 8 = 200 + 200 + 200 + 8 = 608
(distributive property of multiplication over addition)

These principles are basic building blocks, not only of processes used to mul-

tiply large numbers but of much of pure mathematics. They represent the

implicit conceptual knowledge of anyone who understands multiplication proce-

dures in our notational system, but they also underlie the construction of

algebraic tools such as factoring and the derivation of sophisticated theoret-

ical systems such as symbolic logic. To the general reader, they may seem so

obvious as to be trivial, but they are important considerations here because

the errors children make in computation suggest that they are often not oper-

ating on the basis of these principles.

9
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For the teacher, these ways of knowing multiplication raise important

questions. Can children learn to manipulate concrete objects or abstract sym-

bols in ways that enable them to arrive at correct answers without having

principled understanding? Does the naive invention of procedures that make

computational processes more efficient mean that the inventor does possess

understanding? What if a learner can do multiplication in some situations and

not in others? In what order should a child be presented with ways of think-

ing about multiplication?

Doing Multiplication

The arithmetic of doing the multiplication below:

76

x 8
608

can be described in terms of principles for operating on quantities symbolized

by numbers as well as in terms of mechanical procedures for operating on those

symbols. If we think of 8 x 76 as asking us to figure out how many things are

in a total of 8 groups, each of which contains 76 objects, we can see the

mechanical procedures as representations of concrete operations on those

groups. The principles tell us how we can take the groups apart, find out how

many are in each subgroup, and then put the groups back together to find the

total. Working along conventional "place-value" lines, we can take each of

the 8 groups of 76 apart so we have 8 groups of 70 and 8 groups of 6. We can

do this because of the additive composition of 76 from 70 and 6 and because of

the distributive law, which tells us that 8 x 76 = (8 x 70) + (8 x 6). The

language of groups enables us to see that these principles "make sense" in

terms of actions done to concrete objects, linking principled conceptual

knowledge to concrete knowledge. We need not call the principles "decompo-

sition" or "distributivity" to understand that they work.

10 15



In order to figure out how many are in S groups of 70, we need to do some

more taking apart in order to enable us to use our knowledge of the multtpli-

cation tables or combinations. The principle of multiplicative composition

tells us that each group of 70 can be taken apart into 7 groups of 10, and

since we had 8 groups of 70, there will be 56 groups of 10 all together. The

eight groups of 6 will have a total of 48 objects in them. At this point, a

diagram might help us keep track of what we have done:

8 groups of 6 = 48

8 x 76 70 = 7 groups of 10
70 = 7 groups of 10

70 = 7 groups of 10
8 groups of 70 = 70 = 7 groups of 10 = 56 groups of 10 = 560

70 = 7 groups of 10
70 = 7 groups of 10
70 = 7 groups of 10

Now we add the 48 to the 560 to get a total of 608 objects.

total: 560

+48
608

By talking about multiplication in terms of groups and groups of groups,

we have illustrated abstract mathematical principles in a familiar concrete

language. At this concrete level, one's appreciation of the truth of mathe-

matical principles might be said to be intuitive. There remain very large

questions about how one's knowledge of these principles is obtained and, in

particular, about th=. nature of the relationship of intuitive to principled

knowledge. Questions about the relationship between worldly common sense and

the uncommon sense of the hypothetical realm of mathematics are at the very

heart of mathematical epistemology and have been debated by philosophers

throughout the 19th and 20th centuries. (Davis & Hersch, 1981; Guillen, 1983;

Hawkins, 1985), if not since the time of Plato and Aristotle.
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I shall sidestep these ponderous issues for the moment by taking the

perspective of a mathematics teacher. The mistakes I have observed children

making when they multiply large numbers suggest that they have little sense

that what has been described above is what they are doing when they do "8

times 6 is 48, put down the 8 carry the 4; 8 times 7 is 56, add the 4 put down

the 60." When we add the 48 and the 560 in the conventional procedure, we put

the 4 of 48 up on top of the 7 of 76 to indicate that it means 4 tens or 40.

After we multiply 8 x 7, which is really 8 x 70, we add the 40 to it and write

down 60 which means 600 because it is to the left of the 8. These procedures

are more transparent in the "grouping" diagram used above than they are in the

symbolism of the conventional algorithm. The groups of 10 that are meant by

numbers of more than one digit are unpacked in the diagram in a way that makes

the procedures used to operate on the numbers more obvious than the symbolic

"carrying" that is done in computation.

Many of the common mistakes in multiplying multidigit numbers have to do

with the digits that are "carried" (Buswell, 1926). For example, we might

find the following in different children's work:

A. 86
x 3

2438

B. 86
x 3
278

C. 86
x 3
2418

D. 86
x 3
222

In each of these cases, the child knew that 3 x 6 = 18 and 3 x 8 = 24 and that

these two multiplications needed to be done to find the answer. These are not

errors of fact or the simple careless placement of numbers. They are errors

that seem to indicate that the students reached an impasse in their knowledge

of what to do when they got to the carrying part of the procedure and they

invented a way to cope with it (cf. Brown & Van Lehn, 1980).



In Example A the child multiplies 3 x 6, writes down the 8 and carries

the 1, then multiplies 3 x 1 and writes down the answer, then multiplies 3 x 8

and writes down the answer. His or her sense of the procedure might be that

all the numbers not on the same line as the 3 need to be multiplied by the 3.

This rule works as long as there are no carries; typically multidigit multi-

plication is first practiced with these kinds of numbers and this practice

gives the child a context for constructing naive computational rules.

In Example B, the child multiplies 3 x 6, writes down the 8 and carries

the 1, then adds the one to the 8 to get 9 and multiplies 3 x 9 to get 27.

The rule that was applied here might be "add the carries and then multiply," a

rule which could not be based on understanding what the "carries" symbolize,

but might be derived from a learned pattern for doing addition of columns for

numbers in which you add the "carry" to the top number before adding it to the

rest of the numbers in the column.

In Example C, the child multiplies 3 x 6, writes down 18, then multiplies

3 x 8 and writes down 24. Again, this process would work if there were no

carries, but here indicates that the child does not take account of the fact

that the 24 resulting from the multiplication of 3 x 8 symbolizes 240 because

it is the product of 3 and 80. To symbolize the number 240 in relation to the

other numbers in the problem, the 4 should be written in the same column as

the 8 (the "tens" column) and the 2 should be written in the column to the

left of the 8 and the 4 (the "hundreds" column). Because there is already a 1

in the "tens" column from 18, there seems to be "no room" for the 4, and so it

is moved over to the left, with the result that 240 becomes 2400.

In Example D, the child has also carried and added incorrectly, indicat-

ing a lack of attention to the meaning of place value. The errors in this



example may derive from the fact that he or she starts on the left instead of

on the right, first multiplying 3 x 8, then multiplying 3 x 6. Starting with

the 8 in 86 might be explained by the fact that when we say 86, we say the 8

first and then the 6. This child might have even learned that 3 x 86 means

the sum of 3 x 80 and 3 x 6. But lacking an understanding of the importance

of place value in representing quantities numerically, this child multiplies

3 x 8 to get 24, puts down the 2 under the 8 and carries the 4, then multi-

plies 3 x 6, adds the carried 4 and obtains 22, which is put down to the right

of the 2. Here the "2 hundred" of the product of 3 x 80 is maintained when

the answer is read even though it is under the 8 tens because the answer line

is moved over to the right. But the 4 that is carried, which was supposed to

be 4 tens becomes 4 ones as it is added to the product of 3 x 6.

Most of these errors result from bits and pieces of procedural knowledge

incorrectly applied (Brown & Burton, 1978). Procedures are brought from other

arithmetic domains or done in the wrong order, perhaps indicating naive knowl-

edge which is not coupled with a knowledge of contextual constraints. Each of

the erroneous procedures can be explained in a way that suggests they might

make sense to the child who uses them, especially if "making sense" is based

on the assumption that arithmetic is a procedural system rather than a concep-

tual one. They are not "misconceptions" about place value; rather they sug-

gest that place value (i.e., understanding of the value of the quantities

represented by the numbers being operated upon) is simply not a relevant

consideration to these children in the process of doing computation.3

3Resnick and Omanson (in press) have speculated similarly with regard to the
errors children make in subtraction with borrowing.
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As more digits are added to the multiplier or the multiplicand, these errors

based on place-value are compounded since the child is now being asked to mul-

tiply by numbers composed of groups of tens, hundreds, or even thousands, as

well as groups of units.4 The errors described here suggest that whether or

not children understand the concept of place value, they have not learned that

it is a relevant consideration in doing multidigit multiplication.

The most common errors that children make in doing multidigit nultipli-

cation can be seen as a general indication of how they view the doing of

arithmetic. The faults in the procedures they use seem to express a separa-

tion between their sense of what numbers mean as numbers representing quan-

tities (46 is 40 + 6) and their sense of how numbers function in computational

processes. It also would not be unreasonable to conclude that the children

who made these computational errors did nct "understand" multiplication, and

that is the sort of conclusion typically drawn in an instructional situation.

Teaching MultiRlication

A great divide in opinion exists about what children who make these kinds

of mistakes need to know, how they will come to learn it, and how they should

be taught. One side believes that what needs to be known are correct proce-

dures. Learning these procedures is most often a matter of watching, listen-

ing, practicing, and remembering, whereas teaching is showing, telling,

4The principles that give meaning to the procedures used to multiply large
numbers are the same principles as those used to form large numbers in the
first place. In the number "536," for example, the "3" is a symbol for 3
groups of 10, whereas the "5" is a symbol for 5 groups of 100 or 5 groups of
10 groups of 10. The additive composition of groups of groups of 10 (5 groups
of 100 + 3 groups of 10 + 6) is the conceptual basis from which symbols for
numbers are derived. Additive composition is coupled with multiplicative com-
position in multidigit numbers because they are based on sums of groups of 10
and powers of 10.



providing multiple opportunities for practice, and testing students' ability

to carry out the procedure correctly. This kind of teaching can be done to a

whole-class group by a teacher or it can be "individualized" by having stu-

dents read and work the exercises in a textbook. Occasionally a diagram or a

demonstration with concrete materials might be used to explain why the proce-

dure is what it is, but the ultimate purpose of these demonstrations is gener-

ally to have learners come to know the procedure rather than to acquire any

concrete knowledge of the operation.

The computational way of knowing mathematics is the easiest to teach and

learn in a traditional school setting because it lerids itself well to the

social organization of the classroom: large groups of learners under the

direction of one teacher, a curriculum that is sequentially organized and

standard within grade levels, and a system of assessment that clearly distin-

guishes between right and wrong answers. It is not necessarily the easiest

kind of mathematical knowledge to learn, but it is easier to teach than naive,

concrete, or conceptual knowledge because of these organizational features of

schools. Traditional instructional systems consider computrtional knowledge

as "basic," perhaps implying that if principled knowledge is to be acquired,

it will be built on a base of computational competence. This progression from

computational skill to conceptual understanding might be thought of as a

responsibility of the teacher or the curriculum or as a function of student

talent. In the latter case, computation is the only kind of knowledge that is

directly taught and it is assumed that the brighter students will ascertain

the principles that underlie the procedures without ever having those princi-

ples be the focus of instruction. Students who do ascertain something of the

meaning of what they are doing would probably not make the sorts or errors in
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doing multiplication described above. But for others, a more direct approach

to connecting doing with meaning might need to be taken.

On the other side of the instructional divide is teachi directly aimed

at the acquisition of principled conceptual knowledge. In the extreme, this

kind of teaching begins with instruction in the structure of mathematics,

assuming that if one understands the structure of the subject, the ability to

solve contextual, concrete, or computational problems will follow. Students

would not be taught to do computations, although they might be expected to

invent their own procedures. In teaching multidigit multiplication, then, one

would first teach the distributive law and the concept of place value. Such

teaching would range over the structure and composition of numbers in all

base systems, and our familiar base 10 numerals would only be considered as a

particular and not especially important example of how the concept might be

applied. Instruction would be carried out in an abstract and symbolic lan-

guage as this is most appropriate for capturing mathematical concepts. This

is the sort of instruction that was intended by the "new math" of the 1960s.

As with instruction that has as its goals the acquisition of computa-

tional knowledge, teaching toward the acquisition of concepts might be supple-

mented by reference to concrete materials or intuitively derived understand-

ing. Particularly where educators have adopted the notion that theories of

cognitive development should serve as guidelines for instructional design, the

four kinds of knowledge described above are viewed as existing in a necessary

progression, from naive to concrete, from concrete to computational, and from

computational to principled conceptual, with principled conceptual knowledge

being the ultimate goal. One or more of these kinds of knowledge might be

ignored along the way to the acquisition of concepts, depending on what one

believes about how abstract knowledge develops.
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If, for example, one takes the view that naive knowledge can develop into

principled knowledge, learners would need to be provided with many opportun-

ities to engage in activities from which they might develop their own intu-

itive theories about mathematical relationships. The teacher would need to

monitor classroom safety and perhaps social relationships, but the only

teaching that would occur would be encouraging learners to test their theories

in different contexts and to define the conditions under which they do and do

not apply. Both mathematical philosophers (e.g., Brouwer, 1913) and develop-

mental psychologists (e.g., Kauai, 1985) have argued that intuitive theories

of number will develop into principled mathematical knowledge through this

process: The principles themselves need not be taught if learners are in a

position to actively construct them and ascertain their limitations from

experience.

Close by this approach to mathematics instruction is the use of carefully

designed concrete materials to help learners arrive at a knowledge of mathe-

matical concepts. Guidebooks for such manipulable materials as Cuisenaire

rods, attribute blocks, pattern blocks, and unifix cubes suggest structured

activities that are intended to produce a knowledge of the principles of

arithmetic, geometry, or algebra. (See, for example, Trivett, 1976;

Pasternack & Silvey, 1975.) The process by which concrete knowledge becomes

connected to conceptual knowledge is rarely made explicit in these activities,

and connections between concrete manipulations and computational procedures

remain equally vague.

Psychologists are currently at work on the explanation of how those con-

nections might occur, and Leinhardt (1985), for one, has argued that we can

"come close" to'a definition of mathematical understanding if we think of it

as a collection of cal four ways of knowing mathematics as well as an
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appreciation of the connections among them. In this view, no one kind of

knowledge is linked automatically with any other, but by definition, under-

standing can be increased by increasing competence in any one of the four

areas. This way of thinking about "understanding" is broader than many; by

including procedural skill as one element of understanding, it circumvents the

perennial debate about whether or not procedural skill is related to under-

standing. At the same time, procedural skill is not equated with mathematical

knowledge as it might be in many classrooms.

Noddings (1985) argues for a similarly broad view of mathematical knowl-

edge. She links the "informal knowing" of the naive and concrete categories

and the "domain of formal procedures" with a "metadomain" of conceptual prin-

ciples used to critique and discuss why things work in both informal systems

and in formal computational procedures. In her view, doing mathematics

involves making connections among activities in all three domains, whether one

is a new learner or a practicing mathematician. She supports this view with

descriptions of the work of both learners and experts as they turn to the

domain of informal experience to interpret or bring commonsense meaning to

formal procedures and to the metadomain of mathematical principles to explain

the legality of their procedural systems. Davis (1984) also attributes the

acquisition of "meaningful" mathematical knowledge to making explicit connec-

tions among different ways of knowing, as when written procedures for borrow-

ing in subtraction are associated with the trading of base-ten blocks to be

able to "take away" a given quantity.

The positions taken by these scholars are confirmed by my observations of

fourth- and fifth-grade students learning mathematics. When they make errors

(as described above), it seems as if they are not connecting one kind of wth-

ematical knowledge with another. When they approach a problem to be solved,
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it is often the bringing together of the naive with the computational or the

principled with the concrete that produces a solution. There is, therefore, a

reasonable basis in both theory and practice from which to experiment with

methods of instruction that both enhance these connections and build competen-

cies in all areas. Research on the relationship among concrete experience,

procedural skill, and understanding has been taken up by Resnick and Omanson

(1985) and Carpenter (1984), among others. What I wish to focus on here, how-

ever, is the potential role of classroom instruction in increasing competen-

cies in each of these categories of knowledge or strengthening the connections

among them.

A consideration of some of the social features of school learning can

also be used to support this approach. Because school learning is organized

to occur with large groups of children in the charge of one teacher, the

teacher will necessarily face learners who have all different kinds and levels

of mathematical competence. Some children will have quite a usable naive

knowledge of multiplication bound to familiar contexts like buying toys;

others will have learned to move objects (like fingers) around effectively to

get their answers; and still others will be efficient at numerical computation

but unable to explain the processes they have learned. One way to approach

this diversity in an instructional setting with the intention of developing

each of the students' mathematical competence and understanding is to recog-

nize the legitimacy of aZZ of these kinds of knowledge and work to build the

connections among them. Since those connections rest on conceptual prin-

ciples, such an approach to instruction has the potential to increase under-

standing at many different levels, Like Leinhardt and Noddings, I would not

neglect the computational in my attempts to increase mathematical under-

standing. Whether or not it can be conceptually linked to naive, concrete,
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and principled knowledge, it is a form of knowing mathematics that children,

teachers and the general public recognize as useful. Since classrooms exist

within a larger society, it seems appropriate to make connections with what

that society values.

Most fourth-grade children have probably been introduced to the idea that

7 x 6 means seven groups of six, and they can probably speak this "grouping"

language about multiplications up to 10 x 10, expressing the connection

between the concrete and the computational. When larger numbers come into

play, however, it is less likely that children will see multiplication as

simply a way of counting the total number of objects in situations in which

those objects are arranged in groups and all of the groups contain the same

amount of objects. Children can easily picture in their minds, (and the

teacher can easily draw on the board) seven groups of six objects, and they

can count the total number to get the answer to 7 x 6. When they consider the

question asked by 82 x 152, however, it becomes much more difficult to produce

a concrete image that will lead to an efficient counting procedure Lot finding

"the answer." Teachers usually stop using objects to represent mathematical

processes in second or third grade. That is when the numbers get bigger,

making the objects more unwieldly; it is also when the connection between con-

crete and computational processes becomes more complex.

Concrete activities with older children become more difficult to manage

for social reasons. Even if one were to find the answer to 82 x 152 by physi-

cally counting out the objects in 82 groups of 152, the kinds of connections

between that concrete activity and computing the total by the steps in the

conventional multiplication algorithm that could give the algorithm meaning

would not be immediately obvious. Children are likely to see the counting

and the computing as separate and unrelated activities, and it is therefore
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very difficult for them to assign any meaning to the numerical process for

computing 82 x 152 oven though they might he successful in finding the answer

using the conventional Algorithm.

It is possible, without actually having students count out groups of

blocks or m-Icks or dots, to teach in A way that makes connections among

naive, concrete, and computational processes for finding products of large

numbers by making explicit the operattngs on quantities and relating those

operations and quantities to symbolic procedures.

Consider, for example, the mental imagery that results from the following

story: "Eighty-two new apartment houses have just been built on the north

side of the city and each building has exactly 152 apartments in it." Such a

story enables children who are familiar with apartment houses to get an idea

of what 82 x 152 might mean in terms of quantity without counting out 82

groups of 152 or even seeing a picture of 82 groups of 152. It makes avail-

able a semiconcrete representation of the structure of numbers that is easily

imaginable mentally by children and provides an intermediate step between the

concrete and the abstract (cf. Hatano, 1980). It builds on their naive knowl-

edge of a situation in which there are "groups of equal sized groups" to give

meaning to multidigit multiplication.

Such an image can be connected with the processes of decomposing and

recomposing numbers to help students to invent a way to compute 82 x 152.

Each of the 15 floors in each building might have 10 apartments on it, with 2

more in the penthouse. How many apartments are on all the first floors? the

fifth floors? all the penthouses? How many apartments will be in these

buildings all together? If such problems are posed regularly using different

kinds of familiar equal groupings, like cartons of soda pop bottles or rows of
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chairs in the auditorium, children can gain experience with applying

multiplication principles to different contexts.

What follows are descriptions of several ways of teaching children about

the familiar arithmetical process of multidigit multiplication that are de-

signed to increase and connect students' naive, concrete, computational, and

conceptual knowledge. I do not claim that these methods are new or unique to

me, but simply that we need more of such descriptions of practice in the

literature. The descriptions of instruction are all drawn from my awn experi-

ence teaching a heterogeneous group of 28 fourth graders. Several weeks of

lessons are described which include telling and illustrating multiplication

stories, writing out the place-value groupings explicitly in numerical compu-

tational procedures, and working on problems with coins that require inventing

different configurations for grouping and counting. All of these activities

are designed to make children familiar with the principles of additive and

multiplicative composition, associativity, and commutivity, and the distrib-

utive property of multiplication over addition. These principles were never

named or taught directly in my class, but they underlie the naive, concrete,

and computational proc dures that were introduced and practiced.

When these lessons began, the children ranged in computational skill

from beginning to learn the single-digit multiplication combinations (times

tables) to being able to calculate accurately n-digit by n-digit multipli-

cations. The activities were designed so that all of the children could par-

ticipate in and learn something from whole-class instruction. My purpose here

is not to evaluate what was learned from these lessons, but to describe class-

room teaching practices that are congruent with an appropriately complex view

of mathematical knowledge. I did not consider these as lessons in "finding

the answer" to multiplications like 4 x 86. Some members of the class already



were able to do that; others were not. My concern was to teach all of the

students something about what multiplication means while at the same time

enhancing their computational competence.

Telling and Illustrating Multiplication Stories

Stories and drawings are modes of representation that are more familiar

to most children than configurations of numbers arranged on a page. Many of

my lessons on multidigit multiplication used stories and drawings like the

apartment building story described above as a vehicle for giving meaning to

the decomposing and recomposing processes that are at the center of the compu-

tational procedures used to find the products of large numbers. Convention-

ally, numbers are taken apart and put back together along place-value or

"groups-of-10" lines. It is important for learners to become familiar with

that convention, but it is also not always the most obvious or efficient basis

on which to decompose numbers for multiplication; hence some of the stories

and drawings I used represented base-10 decompositions and others did not.

[24 x 9, for example, might be more easily thought of as (12 x 9) + (12 x 9)

than as (20 x 9 ) + (4 x 9).] The essential principle I was attempting to

teach with these lessons was that a multiplier or multiplicand can be taken

apart, each of the parts multiplied, and thea the total product could be found

by adding the partial products, or more formally, the distributive law of mul-

tiplication over addition: a(c + d) = ac + ad.

We started with stories that would represent what happens to quantities

when you multiply a one-digit number by a one-digit number, for example,

"There were six parties last week and seven children attended each party," as

a story for 6 x 7. These came easily; the children I was teaching had done

them in third grade. We quickly progressed to stories that would represent
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the multiplication of a two-digit number by a one-digit number, and then to

stories for two digits times two digits.

All of these multiplications could be represented by the same sorts of

stories as the one-digit by one-digit multiplications, and the progression was

meant to help the children see that the meaning of the operation was the same,

no matter how big the quantities. It was just as sensible (from a mathe-

matical point of view!) to have 43 parties with 26 children at each as to

have 6 parties with 7 children at each. Once the routine of telling stories

for multiplication problems was established, I began to use the stories in

lessons with pictures and numerical symbols to accompany them to represent the

process of taking apart bigger numbers so as to make them easier to multiply

and count. Throughout, multiplication was always discussed as a procedure for

counting the total quantity in a collection of groups in which each group has

the same number of members.

What follows is a sample dialogue from one of these lessons (T means

teacher). In the right-hand column is what wrote or drew on the board dur-

ing the lesson.

T: Can anyone give me a story that 12 x 4
could go with this multiplication?

Jessica5: There were 12 jars and each had
four butterflies in it.

T: And if I did this multiplication
and found the answer, what I know
about those jars and butterflies?

Jessica: You'd know you had that many butterflies
all together.

5All students' names are pseudonyms.
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Jessica has constructed a way of giving meaning to the operation 12 x 4. The

meaning, that is, "what I would know if I did it" is not the same as the

answer, "48."

From this point on in the lesson, I am going to be structuring a concrete

representation of Jessica's story that focuses on the intuitive procedure for

counting large numbers of objects arranged in groups by taking the groups

apart and putting them together. In my dialogues with students, I almost

always follow an unexplained "answer" with a question about how it was de

rived, partly to see what the child will say, partly to give him or her the

opportunity to verbalize the reasoning, and partly to establish the culture of

"sense making" as part of our relationship in the classroom. I assume that

what they say can both teach them something and tell me something about what

they know.

By having the students "capture" their procedures in their awn language,

this kind of lesson makes the concepts underlying multiplication more explicit

and accessible to learners and enables us to learn a great deal about how

children can use principles to explain actions.6 Here, the work of the

teacher and the work of the researcher are parallel. If one is going to make

connections in the classroom between children's naive knowledge of arithmetic

and the procedures and concepts they are to learn, it is necessary to include

inquiry into their ways of thinking as part of the instructional strategy.

As a teacher I diverge from the researcher, however, in that my job goes

beyond finding out what students know or how they learn. Thus, I do not judge

the value of "thinking aloud" only in terms of its legitimacy as a data

6Resnick and Omanson (1985) conclude from their research on subtraction that
the amount of verbalization by a student during instruction designed to link
concrete and procedural performance was important in transferring under
standing from one realm to the other.
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gathering device; for me it is a teaching technique as well. In order to

carry on this sort of lesson, I must teach children :o explain their

thinking and that it is an appropriate thing to do ,e T am onmmitted tn

their acquiring a particular kind of knowledge.

Returning to the lesson:

T: Okay, here are the jars. The stars
in them will stand for the butterflies.
Now, it will be easier for us to count
how many butterflies there are all
together, if we think of the jars in
groups. And as usual, the mathematician'..
favorite number for thinking about groups
is? (Draw a loop around 10 jars.)

Sally: 10

T: Each of these 10 jars has four butterflie;
in it, so how many butterflies are inside
this circle?

John: 40

T: How'd you figure that out?

John: It's 4 x 10. That's easy, you just add
a zero.

T: I put the jars in groups of 10 because
I knew it would be easy for you. How
many more butterflies are there outside
the circle?

Jim: Eight. (He does not know his "tables"
but he can count them easily now that
there are only a few.)

T: I add 10 jars and 2 jars and I get 12
jars. Each jar has four butterflies in
it. (Point to the two fours in 4 x 10
and 4 x 2.) So how many butterflies are
there all together?

Chorus: 48

Even though we have arrived at "the answer" at this poi t, I continuP on with

the lesson, analyzing the procedure we used and veel41izing its structure.
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One message that I hope to convey with this kind of lesson is that even

children who do not have computational competence can "figure out" the answer.

T: I added the 10 and the 2 to get 12 jars.
Should I also add the 4 and the 4 to get
8 butterflies?

Shawn: No. There are just four butterflies in
each jar. That will never change.

This is usually the glitch for children in what mathematicians call the

"distributive law"; it's an easy principle to see when it is attached to quan

tities in stories like this one, but very confusing when presented in the

abstract. When students see only (4 x 10) + (4 x 2) it is very hard to

explain why the answer is not obtained by doing 8 x 20. Yet math books often

ask children to do such figuring without referring to any representation of

quantities as a way of introducing the partial products used in multidigit

multiplication.

The next part of the lesson is intended to get at the idea of finding a

grouping that makes the figuring easier. Usually that meriaA ;r)uping by

"tens" and "ones," but not always.

T: Suppose I erase my circle and go back
to looking at the 12 jars again all
together. Is there any other way I
could group them to make it easier
for us to count all the butterflies?

Jean: You could do 6 and 6.

T: Now, how many do I have in this group?

Steve: 24

T: How did you figure that out?

Steve: 8 and 8 and 8. (He put the 6 jars
together into 3 pairs, intuitively
finding a grouping that made the
figuring easier for him.)

T: That's 3 x 8. It's also 6 x 4.
Now, how many are in this group?
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Jean: 24. It's the same. They both
have 6 jars.

T: And now how many are there all
together?

Patty: 24 and 24 is 48.

T: Do we get the same number of
butterflies as before? Why?

Patty: Yeah, because we have the same
number of jars and they still have
4 butterflies in each.

Jean's and Patty's answers are what I would call "explained." I had a feeling

of what made sense to them here without having to ask. I asked several other

children to explain in their own words why there were the same total number of

butterflies each time. It was clear from watching them that some of the kids

were surprised that it came out the same, which was a cue to me to do lots

more of these different kinds of groupings.

In subsequent lessons, I made the numbers in the multiplication bigger,

for example, 76 x 4, and I became even more didactic. I said that I was going

to tell a story to help us think about what this multiplication means. I

chose a theme from some stories the students told in another context: "There

were four planets and each had six astronauts exploring on it." I drew the

following ol the board:

-1;1 t I-
I -X.

Then I said, "Then a big spaceship with 70 more crew members landed on

each planet," and I drew a spaceship with the number 70 on each "planet."
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I asked how many space men were on each planet now, and then I asked them to

figure out how many space men there were all together, on all four planets.

Some children added 76 + 76 + 76 + 76. Another doubled 70, then doubled 140

and got 280, and then added 24 to get it to a total of 304. Another multi-

plied 70 x 4 and then multiplied 6 x 4 and added the products together.

In each case, I had the child explain to the whole class "how he/she

figured it out" and gave equal praise to each solution. Each of their expla-

nations is an expression of naive, concrete, or computational knowledge of the

principles that underlie multidigit multiplication. By having the children

explain their different procedures to one another and by legitimating them all

in a whole-class discussion, my intention was to provide experiences that have

the potential to expose concepts. This kind of mathematics teaching contrasts

with the prevalent tendency to have students learn one way to find the answer

in which they are meant to remember procedures.

After everyone had done some experimenting with both base-10 and less

conventional decompositions as ways to find the product of a one-digit and a

two-digit number, we moved on to two-digit numbers multiplied by two-digit

numbers. These are more complex because there are two numbers to decompose

and, even if one uses only base-10 decompositions, there are several different

ways to go about finding the total product. For example, 63 x 24 can be
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interpreted as 63 groups of 24. Those 63 groups can be separated into two

sets of groups: 60 groups of 24 and 3 groups of 24. If we could figure out

the total quantity in both of these sets of groups and add them together, we

could know how many are in 63 groups of 24. But it's not very easy to see

how many are in 60 groups of 24 or how many are in 3 groups of 24, so we need

to treat each of these as a separate multiplication to be represented using

the same sort of taking apart and putting together as I described above to

find how many are in each of the two sets of groups.

We can start with either one. How might we break down 60 groups of 24 to

better be able to count what is there? We could think of it as 10 large

groups each containing 6 groups of 24, and work from there, first finding 6

groups of 24 [(2 groups of 24) + (2 groups of 24) + (2 groups of 24)] and then

multiplying that by 10. Or we could think of 60 groups of 24 as 60 groups of

20 and 60 groups of 4. Sixty groups of 20 is 120 groups of 10, and that's

1,200; 60 groups of 4 is 240. The total is 1,440. Now we need to figure out

how many are in 3 groups of 24. One of my fourth graders who had played

around a great deal with groups and numbers might say, "Well that's the same

as 6 groups of 12, and that's 72." You could also think of it as 3 groups of

20 (60) plus 3 groups of 4 (12) for a total of 72.

All of this becomes more clear if the different kinds of taking apart and

putting together can be shown in a picture. The most convenient way for books

and teachers to illustrate this sort of decomposition is with squaredoff

areas, using the rows and columns to help with the counting. The multipli

cation of 63 x 24 would be represented by a rectangle 63 blocks high and 24

blocks wide. The decomposition would break the rectangle up, first into two

rectangles, then into four rectangles as follows:

3136



m
n
a
m
m
a
m
m
o
n
s
m
n
i
m
m
i
n
n
n
i
n
n
i
n
a
n
n

i
s
o
m
m
u
s
i
m
m
u
m
m
o
i
u
m
u
m

m
i
m
u
m
m
o
m
m
i
m
m
u
m
m
i
l
l
i
m
m
i
m
m

m
m
o
m
m
o
m
m
u
m
m
i
l
m
u
m
m
m
m
i
l
i
m
e
m
m

O
 
n
n
n
n
n
n
n
i
l
l
i
n
n
n
E
n
n
l
i
n
n
i
n
n
O
M

U
n
a
n
n
f
i
n
U
n
n
n
a
i
n
n
l
i
n
n
i
n
n
i
n

m
o
s
o
m
m
i
m
m
m
o
s
o
m
m
o
m
m
p
l
i
m
m
e
m

l
i
m
m
i
n
s
u
m
p
l
i
m
m
i
r
n
i
m
m
o
m
m
i
l
m

m
m
o
l
i
m
m
i
u
m
m
u
m
m
i
l
m
o
m
m
a
m
m
o
m

I
m
m
 
m
i
s
i
m
p
u
m
m
E
m
m
u
m
e
m
m
o
m

1

M
s
 
m
o
m
o
m
m
O
m
M
O
N
I
m
m
u
1
1
1
1

m
0

m
u
m
 
m
i
l
i
m
m
o
s
m
i
m
m
o
m
m
o
m
m
o
m

M
i
n
n
 
I
M
M
E
M
M
E
n
n
I
n
n
E
n
n
I
m
a
l
n
i
l

m
n
a
n
n
n
E
m
m
e
a
m
n
i
n
n
o
m
m
n
i
i
n
m
a
n
n

O
 
n
l
I
n
n
I
M
O
O
M
E
M
I
M
M
E
n
n
e
r
n
a
n
p
n
n

I
M
O
M
O
M
M
M
O
n
n
E
n
n
n
O
n
n
l
i
n
i
n
n
n

I
n
n
a
n
n
n
a
n
n
l
I
M
U
N
M
I
I
I
M
M
O
n
a
n
n

m
i
m
u
m
m
l
i
m
m
m
u
m
e
m
o
m
m
o
m
i
u
m

m
o
m
m
i
o
n
s
i
m
m
o
m
m
o
m
m
m
o
m
m
u
m
m

m
o
o
m
m
o
m
o
m
m
o
m
m
o
m
m
i
n
o
m
p
l
u
m

m
m
i
s
s
i
m
m
i
n
m
s
o
m
m
o
m
m
o
m
m

m
u
m
m
m
m
o
m
m
m
o
m
m
o
m
m
i
u
s

l
i
m
o
m
m
m
m
o
m
m
o
m
m
i
l
m

i
m
m
o
m
m
o
m
p
s
o
r
m
o
m
m
o
m
o
m
m
i
l
m

m
i
s
i
o
m
m
o
m
m
u
m
m
o
m
m
i
n
u
m

n
 
n
i
n
n
i
O
n
n
M
E
N
N
I
M
M
E
M
I
M
M
I
n
n

a
m
m
m
o
n
s
i
m
m
o
m
m
i
l
i
m
m
i
m
m
i
l

m
m
a
l
i
m
m
r
n
m
e
m
o
m
m
m
i
l
i
m
m
i
l
m
o

M
i
n
n
a
n
n
n
n
n
i
O
n
n
n
 
M
O
M
M
I
N
O
M
M
I
n
n

I
n
I
M
I
U
M
M
E
M
M
I
O
N
 
m
m
E
m
m

p
l
e
p
o
r
n
s
m
o
m
m
o
m
m
o
m
m

m
m
i
m
m
o
m
i
l
m
m
u
m
m
o
w

m
u
n
i
m
o
m
p
w
m
s
i
m
m
l
i

I
N
O
M
O
M
M
O
M
M
I
I
M
M
E
M
M
I
E

i
m
m
p
l
o
r
n
m
p
l
i
m
m
o
m
m
l
i
m

i
m
i
m
m
r
n
m
i
l
i
m
m
m
e
m
o
m

m
m
o
m
m
i
s
m
o
m
m
o
m
m
u
m
m

a
n
a
n
n
n
a
n
n
n
n
a
n
n
E
M
O
n
n

n
 
M
a
n
a
n
n
l
i
n
n
I
n
n
l
i
n
n
n
u
n

a
n
a
n
n
n
a
n
n
o
m
i
n
m
o
n
n
E
n
n

n
 
M
a
n
n
a
n
n
i
e
n
a
n
n
E
n
n
e
i
n
S

e
 
n
n
n
a
n
n
n
n
o
m
m
a
l
i
n
n
a
n
n

n
 
n
i
a
n
n
O
n
n
l
i
n
n
n
O
n
n
I
n
n
n

a
n
a
l
l
a
n
n
u
n
o
n
s
U
f
n
u
n
a
n

n
O
N
M
E
M
O
M
M
M
I
M
O
M
M
E
M
E

m
a
n
n
i
O
n
a
m
n
a
m
i
n
l
a
n
n
o
m
n
a

I
M
I
N
I
I
M
E
M
I
O
N
I
M
I
N
O

I
m
M
O
S
E
n
i
m
m
m
i
l
E
n
n
n
a

m
o
n
n
E
M
m
O
n
o
n
n
n
O
m
n
i
O
n
n

E
 
M
I
M
M
I
M
M
E
n
n
M
E
O
M
M
O
O
n
n
n

M
M
O
M
M
M
E
I
M
M
I
W
O
M
I
M
E
n

O
 
M
M
U
M
E
n
n
n
i
m
M
I
I
M
E
n
n

M
M
O
O
M
E
N
O
M
M
E
N
N
M
E
N

S
 
I
M
M
I
N
I
N
E
E
M
E
M
E
E
M

O
M
M
M
I
O
O
M
I
N
E
M
E
M
M

E
M
O
M
M
I
S
I
M
E
O
M
M
E
E

o
o
m
m
m
o
m
i
l
 
m
m

m
m
o
o
m
m
u
m
m
u
m
e
n

U
.

-
o
m

m
i
l
m
o
m
m
o
m
i
m
m

I
m
m
o

m
a
m
o
m
m
a
s
o
n
s
i
m
m
a
s
s
m

-..

..

i
m
m
o
m
o
m
m
o
m
m
m
m
o
m
m
i
s
m

m
 
M
E
M
M
O
I
O
N
E
S
O
O
M
M
E
N
E
M
I
I
M
I

,

O
 
n
a
n
a
i
n
n
a
n
i
M
a
n
n
E
n
n
n
a
n
i
n
n
n
i
a
m

i
m
m
i
n
n
n
O
n
n
n
n
i
m
m
i
n
n
a
n
n
i
a
m
m
i
m

O
 
n
n
i
l
l
i
n
n
E
n
n
l
I
M
M
E
M
I
n
n
O
M
E
M
E
n
n

I
n
n
a
n
n
a
n
n
E
n
n
i
O
n
n
n
a
n
n
n
a
n
n
n

E
N
M
I
O
N
I
M
O
M
E
n
n
n
n
i
O
n
n
n
m
i
n
a
n
n
l
i
n

O
 
n
O
n
n
l
i
n
n
E
n
n
n
l
i
n
n
n
l
i
n
n
E
n
n
n
n

M
a
n
a
n
O
I
N
I
n
a
n
d
E
n
n
a
n
n
n
n
l
i
n

O
 
n
n
a
n
n
u
m
n
n
O
i
n
n
m
i
n
n
i
m
m
i
n
m
i
n
n
n
i
O
N

O
 
n
n
a
n
n
O
n
E
n
n
n
O
n
n
l
i
n
n
O
n
n
l
i
n
n

M
a
n
n
l
l
a
n
n
n
a
n
n
O
n
n
l
a
i
n
n
n
O
n
n
l
l

M
M
I
M
I
N
I
M
I
N
N
I
M
I
S
O
M
M
I
n
n
E
N
E
M
1
1
.
0

M
n
O
n
l
i
n
n
n
n
n
E
m
e
n
l
a
i
n
n
N
E
n
n
n
n

O
 
n
n
a
l
i
n
n
l
i
n
n
a
n
a
n
n
n
O
n
n
I
n
n
a
n

n
n
a
n
n
E
n
a
n
n
I
n
n
n
I
M
U
M
I
M
M
I
M
O
n

m
I
n
n
a
g
n
i
n
n
a
n
n
U
N
E
N
n
o
n
o
l
n
o
n
n

O
 
n
n
O
N
N
E
W
O
M
M
U
M
E
N
N
E
M
I
n
n
n
n
a
n

M
I
O
n
a
n
n
i
n
n
n
i
a
l
l
n
E
n
n
e
n
n
n
n
n
n

m
i
l
s
o
m
m
o
m
m
i
l
m
m
e
m
m
o
s
s
m
o
m
p
i
l
m

i
m
p
o
m
m
u
m
m
u
m
m
o
m
m
i
u
m
m
l
i
m
m

m
m
o
m
p
l
i
i
m
m
o
m
m
o
m
m
o
m
m
e
m
m
o
m

l
i
m
e
m
o
m
m
i
m
m
o
m
m
o
m
m
i
m
m
u
m
m

I
m
o
m
m
i
l
i
m
m
i
l
m
o
m
m
e
a
m
m
w
o
m
m
o
m

p
o
m
m
u
m
m
o
m
m
o
r
m
u
m
m
i
l
i
m
m
o
m

u
m
o
m
m
e
m
o
m
m
o
m
m
i
l
m
i
n
s
i
m

M
M
O
O
M
a
n
n
U
a
l
n
n
U
n
a
n
n
n
n
i
n
n
a
n

M
I
M
I
N
N
O
M
O
N
I
M
I
n
n
n
a
n
n
n
E
n
n
n
n

O
 
n
n
a
n
n
l
i
n
n
O
n
E
n
n
E
n
n
n
E
M
O
M
I
N

E
 
n
n
i
o
n
E
n
n
n
l
i
n
n
n
i
a
l
l
n
n
i
a
l
O
n
n
n
i

n
 
n
n
O
M
N
E
n
n
n
n
a
n
n
n
E
n
n
n
O
M
M
I
n
i
n

N
 
O
M
O
M
E
M
O
n
n
n
E
n
n
a
n
n
i
O
n
l
i
N
n
n

M
E
E
N
N
E
M
I
n
n
n
l
a
m
M
i
n
n
E
n
n
O
n
n
a
l
l

M
n
U
a
n
U
n
n
n
n
O
n
n
a
n
n
O
M
E
M
M
E
n
n

M
O
M
O
M
M
I
N
U
O
M
M
I
n
n
a
n
n
n
E
N
M
M
E
M
E

l
i
n
n
a
n
n
I
n
n
i
a
l
a
n
A
n
n
E
n
n
O
M
E
n
n

M
O
M
a
n
n
l
i
n
n
n
n
n
i
n
n
a
n
n
n
n
E
n
n
a
n

M
E
M
M
I
M
E
N
I
N
E
n
n
O
n
n
I
n
n
n
I
M
O
N
a
n

M
O
M
I
S
M
I
n
n
n
l
i
n
n
O
M
M
I
n
n
E
n
n
I
n
n

M
n
m
a
n
n
i
n
n
n
l
i
n
n
m
E
n
n
a
n
n
n
a
n
a
n

M
O
N
N
E
n
n
E
n
n
a
n
n
n
O
M
E
N
O
M
M
E
n
n

M
n
n
O
l
n
i
n
n
i
n
n
a
n
m
l
n
n
I
n
n
n
l
i
n
a
l
l
n

M
E
M
I
N
M
E
n
o
n
n
O
n
n
n
l
i
n
n
E
E
M
M
E
n
n

m
u
s
a
m
a
i
m
m
u
m
u
s
u
m
m
u
m
o
m
m
i
s

I
I
I
I
I
M
M
I
N
I
M
M
E
M
E
I
M
E
I
M
M
I
N
I
M

S
 
O
M
O
M
I
N
I
N
O
N
E
N
E
M
E
N
U
M
M
O
M
M

N
 
E
M
W
E
E
M
I
N
M
E
I
N
E
E
M
O
M
M
O
N
E
N
I
O

O
 
n
n
E
M
I
n
n
n
O
n
n
n
n
i
a
l
l
i
n
n
a
n
n
n
n

M
n
O
n
M
a
n
n
E
n
n
n
O
M
M
E
M
I
N
n
i
e
n
n
n

O
n
n
O
M
E
n
n
n
O
n
n
l
i
n
n
l
i
n
n
n
S
M
O
M
I
n

n
n
n
n
l
i
n
e
n
n
a
n
I
M
I
N
I
N
N
I
M
E
M
O
n
n
n

M
E
M
O
M
E
n
l
i
n
n
l
i
n
n
n
O
n
n
n
n
a
m
l
i
n
n

E
 
n
n
O
M
E
n
n
l
i
n
n
E
n
n
I
M
I
L
M
O
M
M
I
O
n

M
I
N
M
E
N
N
I
E
N
M
E
M
M
E
E
N
E
M
E
M
I
O
N

I
I
I
I
M
O
N
E
n
n
i
a
l
n
E
n
n
E
M
M
U
n
n
O
n
n
n

M
O
M
M
M
I
M
E
n
n
i
o
n
E
n
n
E
n
E
n
n
O
M
I
O
n
n

E

n
n
O
M
M
I
n
n
a
n
n
i
n
n
n
l
i
n
n
i
n
o
n
m
i
n
n

M
O
M
M
M
E
n
O
I
N
E
N
 
M
a
n
n
n
a
n
a
n
n
a
n

O
 
n
n
a
M
M
I
n
n
n
n
n
 
n
i
a
l
l
i
n
n
n
o
n
n
n
i
n

E
 
M
O
O
M
M
E
M
I
N
I
n
n
O
n
n
n
O
i
n
n
O
n
n
n
n

4
M
O
M
O
M
E
N
N
I
O
N
M
N
O
M
I
N
N
E
M
E
M
E
M
E

N
 
M
O
O
M
M
i
n
n
O
n
n
E
n
n
l
i
n
n
n
E
M
M
M
I

i
s
m
p
o
w
n
i
m
m
u
m
u
m
a
i
m
m
a
m
a
a
n
a

,



total area is given by (60 x 20) + (3 x 20) + (60 x 4) + (3 x 4), but this is

still quite an abstract representation for kids, unless their parents work in

the tile business. It gets all mixed up with ideas about lprw.h of sides and

area. If you talk about illustrating 2 x 3, for example, by
IMO
NMI , you can

say this figure is 2 blocks across and three blocks down, 2 columns of

3 blocks, or 3 rows of 2 blocks, and 6 blocks all toegther. But many books

and teachers do not talk about such an illustration in terms of rows and col-

umns of blocks. Instead, they switch into measures of length and area, saying

that such a figure has a width of 2 inches and a height of 3 inches and itE,

area is 6 square inches. Now the difference between inches and square inches

is a significant one; one measures length whereas the other measures area. To

try to connect these measures to the ideas about grouping associated with mul-

tiplication is difficult: Are we talking about 2 groups of 3 inches? or 3

groups of 2 inches? and if so, in either case, how do we wind up with a total

ot 6 square inches instead of just 6 inches? These complications made me re-

luctant to use blocks built up into rectangles as an illustration for large

number multiplications.7 One would need to be very careful with the language

and checking children's sense of what it all means in order for this to make

sense to them as an illustration of the multiplication process.

When I asked my fourth graders to come up with a story about a two-digit

by two-digit multiplication, we worked out a rather nice pictoral represen-

tation together. Given the multiplication 28 x 65, Coleen suggested that we

could think of it as 28 glasses with 65 drops of water in each glass.

7Some textbooks avoid the issue by illustrating two-digit by two-digit multi-
plications using a rectangular array of a large number of dots, and show that
it is easier to count dots by grouping them. This is an improvement, but the
activity remains for the most part passive and abstract, since one is unlikely
to actually count the dots, even in the smaller groups.
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I said I didn't want to draw 28 glasses on the blackboard, so instead I would

draw two big jugs that would each hold the same number of drops as 10 glasses.

I questioned the students as I drew: How many jugs would I need? Two. And

how many more glasses? Eight. How many drops in each glass? Sixtyfive.

And how much in each jug? Six hundred fifty.

For each of these answers, I requested an explanation, and the student

verbalized how he or she "figured it out." I drew the following illustration

on the blackboard:

650 650

34 3 9



Instead of drawing the drops in each glass, I put numbers in each glass

and on the jugs. I asked the class what we should do to find the total number

of drops? Add the jugs together. That's 1,300 drops. Then I said I would

show them a trick that would make it easy to add the drops in all the eight

glasses together. This procedure illustrates the base-10 decomposition of 65

that occurs in the conventional multiplication procedure: Suppose I take five

drops out of each (circle each 5 with colored chalk) and put them in a jar:

How many are in the jar? 40. How many are left in all the glasses? 60. And

how many glasses all together? 8. How many drops are left in each glass?

480. So, now I have 1,300 drops in jugs, 480 drops in glasses and 40 drops in

the jar. How many drops all together? 480 + 40 is 520 and 520 + 1,300 is

1820. One of the students pointed oct that we could have also made it easy by

pairing off the glasses, making four pairs with 130 drops In each. Pairing

these pairs, we have two groups with 260 drops in each, and adding those

together, 520 drops all together. The children figured all of this out

without any paper and pencil, and I pointed that out to them. By clever

groupings, we had reduced the calculations to those that could be done

"mentally" by most of the class. Some members of the class are quite capable

of doing 28 x 65 using the conventional algorithm, paper, and pencil; for

them, this was a lesson about thinking rather than about doing.

After we finished this illustration of 28 x 65, one of the girls in the

class (Ko) came up with "another way of thinking about it" (and that's just

what she called what she was about to tell me). I followed along and also put

Ko's explanation on the board so as to give it equal weight in the eyes of the

class. She said, "I thought you could have three jugs. Two would have 650

drops in them, just like you said there. But if you put 650 drops in the

third one, you'd have too much. You'd have to take out two glasses, because

4 0
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there are not 30 glasses in the story but only 28. And each glass has 65

drops, so you'd have to take out 65 plus 65 or 130 drops. Then in that third

jug, you'd have 650 - 130 which is 520. You'd have to add that to the other

two, 1,300 + 520, and you get 1,820." I also illustrated Ko's thinking to re-

late it to what we had done before:

10 glasses 10 glasses 8 glasses

`....4."."...W.r.J

520

650 take away
2 glasses

Although I did not use these symbols or terms with the class, we could

explain what Ko did, using the mathematical principles df multidigit multipli-

cation, as follows:

41
36



30 x 65 (28 + 2) x 65
(30 x 65) (28 x 65) + (2 x 65)
(30 x 65) - (2 x 65) 28 x 65

(20 + 10) x 65 30 x 65
](20 + 10) x 65] - (2 x 65) 28 x 65

(20 x 65) (10 x 65) - (2 x 65) 28 x 65
1,300 + 650 - 130 28 x 65
1,300 + (650 - 130) 28 x 65
1,300 + 520 28 x 65
1,820 28 x 65

Additive composition
Distributive law
Subtracting the same quantity
from both sides of the equation

Additive composition
Substitution of an equal quantity
Distributive law
Computation
Associativity
Computation
Computation

(I have used "computation" here as a shorthand to avoid writing out the con-

ceptual foundation of multiplication by multiples of 10 and addition so that

it would be possible to focus on the principles of multidigit multiplication.)

If I wanted to know whether Ko had a principled conceptual understanding of

mathematics, I might ask her to try to invent another legitimate procedure for

the same problem, and another. But I include her story here to provide evi-

dence that kids do invent computational procedures and to support the argument

that what they really need to be competent at school mathematics is some help

connecting what they can do with the conventional symbols and procedures.

After three or four lessons in which I used students' stories to do draw-

ings and numerical symbolization representing the decomposition process on the

blackboard, I constructed assignments in which the children would do their awn

stories, numerical representations, and drawings on paper with decreasing

amounts of teacher direction. In some of those assignments, they were

directed to "find the total" according to whatever decomposition and recompo-

sition method they chose and then to find it again using a different method.

Some of the children became quite interested in showing me how many different

ways they could decompose one of the factors to find the partial products. At

this point, they were using the concrete processes we had practiced to make

sense of a procedural strategy, or in Nodding's terms, using informal

"commonsense" knowledge to inform their competence in handling formal
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procedures, and in the process, ranging into the metadomain of reflecting on

the nature of what they know.

This "game" of multiple decompositions was related to a set of lessons I

had done earlier in the year on coin problems. Although these earlier lessons

were not directly meant to teach multidigit multiplication, they provided a

context for making connections with children's naive knowledge of the distrib-

utive law and the multiplication and additive composition of numbers.

Coin Problems

"Using only two kinds of coins, make $1.00 with 19 coins." Early in the

school year, I gave my fourth graders the challenge of solving this problem

with two goals in mind: I wanted to demonstrate that there were many possible

routes to the solution of a math problem, and I also wanted to show them that

math problems could have more than one right answer. At first, the students

did not know where to begin. I was challenged to help them find a "way in" to

this problem that would leave most of the thinking in producing a solution up

to them. The activities that I designed turned out to involve several weeks

worth of practice with many of the principles underlying multidigit multipli-

cation. The coin problems I gave them to do were simplified versions of the

problems stated above. They required the same process of taking numbgrs apart

and putting them back together again that involved in using decomposition and

the distributive law to do multidigit multiplication.

1 did not tell the class much about the connections between what we were

doing and the more coaventional multiplication procedure, although such con-

nections could certainly be made. Instead, I capitalized on the fact that

the coin problems did not look much like the arithmetic they had been learning

from other teachers. These problems therefore had the potential to free them

up to experiment and think mathematically rather than relying on mechanical
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routes to right answers. They also were less likely to trigger the sorts of

thoughtless procedures that are routinely applied to arithmetic problems

(Carpenter, 1984). The procedures the students used to puzzle out the dif-

ferent combinations of coins that satisfy given conditions are isomorphic to

the computational procedures involved in multiplication; they represent the

concepts of multiplication in a context (i.e., money) that has its awn inter-

nal equivalence relationships.

The relationships among different kinds of coins are concrete in contrast

to the more abstract trading represented by place value in numbers. One dime

is worth ten cents. One dime is in some sense "the same as" ten pennies, but

a dime is only one coin, while ten pennies is ten coins. A dime could also be

worth the same as six coins if one were a nickel and the others were pennies.

So the total number of coins and the total amount of money are related, but

they are related in complex ways. One coin might be worth one cent, but it

also might be worth five, ten, twenty-five, or fifty cents. These relation-

ships are similar to those that give place value meaning, but placement is a

more abstract way to represent comparative value: A "6" can be understood not

only as 6 ones, it can also mean 6 groups of 10 ones or 6 groups of 100 ones,

depending on where it is in a number.

I began these lessons with a review of all the coins we use in the United

States, making a chart on the board which listed each coin's name and how much

it was worth in cents. I also identified each coin with the first letter of

its name so that I would not have to write the name of the board each time I

wanted to refer to it. I was careful to use the word "cent" when I was talk-

ing about the value of a particular coin and the word "penny" when I was talk-

ing about the coin that is worth one cent, even though these words are often

used interchangeably.
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Coins Amounts of Money

penny p = I cent
nickel n = 5 cents

dime d = 10 cents
quarter q = 25 cents

half-dollar h = 50 cents
silver dollar s = 100 cents

The more advanced students liked the chart because they thought it had to do

with algebra.

We began working with simple multiples: How much money is 3 dimes worth?

5 dimes? 7 nickels? 2 quarters? And then we did combinations: What are 3

dimes plus 2 quarters worth? 7 dimes plus 3 pennies? 2 quarters plus 1 dime?

These were sometimes written on the board as 3d + 2q, 7d + 3p + 2q + Id, and

the use of these letters did not seem at all problematic to the children. I

did not need to explain that 7d meant 7 x 10 cents; their familiarity with

coins gave them this knowledge. These exercises represented the concept of

additive composition which is a central idea in the process of multidigit

multiplication. Finding the monetary value of combinations of coins was also

an important exercise in working in a context where the "order of operations"

matters; everyone knows that you multiply first and then add to get the value

of the coins because of their familiarity with how money works (i.e., to find

the value of 3d + 2q, first you multiply 3 x 10, then you multiply 2 x 25,

then you add the results of these two multiplications.)

This familiarity gave the students the opportunity to do mathematics con-

fidently in an area where they would later be introduced to more abstract

forms. Because they knew how coins worked, they would be unlikely to add

first and then multiply or make other procedural errors. (Adding first would

be like adding the "carry" before multiplying. See pages 11-14). The symbols

used to indicate the "order of operations" in a mathematical expression are

parentheses. Taught in the abstract, they constitute just another rule to be
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remembered: when children see (3 x 10) + (2 x 25) they are supposed to

remember to do the multiplications first and then add.

Another activity we did was figuring out how many of which kinds of coins

would add up to a certain total. At first we used only pennies or only

nickels or only dimes or only quarters or only half dollars, and we usually

began by figuring out how many would make a dollar. The multiplications and

divisions here all involve fairly "easy" combinations of 5 and 10, but there

are a many variations. Children can work confidently with the processes of

decomposition and regrouping in these activities because they do not have to

strain to remember the "number facts" involved in the computations. The

"problems" are ones they can solve and yet there is enough of a challenge to

make it satisfying when they find the solutions.

When we switched to using two kinds of coins to add up to a certain

amount of money (e.g., nickels and/or pennies to make 82 cents) the problems

became more interesting and fun because there are multiple solutions. The

children were most enthusiastic about figuring out many different ways to make

an amcunt "82 cents" using nickels and pennies, and their enthusiasms gave me

many opportunities to help them generate their solutions using strategic

rather than random thinking. The nature of these problems is such that once

they come up with one solution (like 16 nickels and 2 pennies for making 82

cents), they can make more solutions by trading: for example, everytime they

take five away from the pennies pile, they need to add one to the nickels

pile. The process gets children involved in using mathematics in a way that

enable them to challenge themselves to find solutions, constructing mathemat-

ical hypotheses along the way about whether or not they have found them all

yet. Students who are not yet able to use multiplication and division can

find solutions by adding, and so a lack of computational "skills" does not
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hinder their participation. On the contrary, they develop their own more

sophisticated adding strategies which come to look more and more like multi-

plication, moving from a naive knowledge of the process toward understanding

its principles.

As my class worked on these problems, I encouraged them to "guess and

check": that is, to pick numbers of coins that they thought might add up to

the desired total, and then to check to see if they actually would. Once they

got going on this procedure, they were able to think mathematically and modify

their guesses strategically. But first I had to find a way to help them over-

come a habit that inhibited their use of this way of getting a solution: Once

children in school recognize that something they have put down on paper is

wrong, they are intent on erasing it and forgetting it.

They don't want to leave any evidence around of their "failures," espe-

cially once they have figured out how to "succeed." They are used to being

judged on the basis of answers produced rather than on the basis of strategies

for arriving at answers. This way of approaching mathematics is not only con-

ceptually problematic; it causes logistical difficulties as well. I needed to

find a way to reward studElts for all of their guesses so that they would

record their "wrong" guesses and think about why they did not work, so I gave

them a framework for writing down their thinking about the coin problems. For

example, for a problem likP 'How many ways can you make a dollar using dimes

and/or nickels?" I dire( d them to put the following down on paper:

total amount of money
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I suggested that they list cat of their attempts, not just the ones that "come

out right," and I directed them to put a line through the ones that did not

satisfy all the conditions of the problem. I praised them for their number of

tries, not just for the number of solutions they could find that met all the

conditions. This not only gave them a record of their work to analyze; it

gave me some sense of how their thinking progressed and it provided a transi-

tion to using the placement of symbols on a page to represent mathematical

operations. After several minutes of working on the problem: "Make $1.00

using nickels and dimes," one student's paper looked like this:

total amount of money

5

6

8

9

10 $1.00
---$1.05-

8 $1.00
---$1.05-

4 $1.00
2 $1.00

I would assume, from looking at such a paper that the student first thought he

should decrease the number of nickels by one if he increased the dimes by one.

It took him two trials to figure out that the nickels had to be decreased by

tWo for the total to stay the same.

I asked the students to talk about the "patterns" they noticed in their

charts. On a problem such as the one illustrated above, they would say things

like, "If the dimes go up by one, the nickels have to go down by two," or

"Everytime you put in another dime, you have to take away two nickels."

tried to use their language myself in noting trading patterns and to make

telling about patterns a central part of our work on problem solving. Each

time we began a new problem, however, the discovery that there would be a

pattern and the description of patterns was left up to the students. If they
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were working away randomly, I did not interfere by giving them a suggestion

for an "easy way" to get a lot of solutions. If there was a strategic pattern

obvious in their work, I took note of it and encouraged them to verbalize it.

They were, in a sense "inventing algorithms" which would help them to count

large numbers of cents quickly, using the same principle of distributivity

that underlies the conventional multiplication procedure.

Another kind of problem we did that focused on grouping and recognition

of strategic patterns was to find a number of ways you could make $1.00 using

only two kinds of coins, for example, nickels and quarters, and then to find

all the ways to make $2.00 using the same two kinds of coins. Many students

observed patterns; for example, they noticed that they could take the solution

to the first problem and make solutions to the second problem simply by dou-

bling the total coins in each category or by adding 20 to all the nickel

amounts or by adding 4 to all the quarter amounts. These are all concrete

exercises in composing a total quantity using groups of smaller quantities, an

operation that is isomorphic to the procedures used in multidigit multipli-

cation. They require students to use their naive and concrete knowledge of

those procedures, and the activity of "finding patterns" provides opportun-

ities to link that knowledge to procedures and principles.

After a few days of working with two kinds of coins to get a given total

amount of money, I introduced problems using 3, 4 ,5, And 6 different kinds of

coins. These problems offered many more possibilities for "guesses" and it

was harder to see the patterns. It also required thinking about relationships

among three variables: the number of coins; the number of kinds of coins; and

the value of the total. If we had begun with this sort of problem, the stu-

dents would not have had a repetoire of strategies and principles with which

to begin their decompositions. In all of the problems I've described so far,
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no condition was placed on the total number of coins that could be used. To

make a dollar, one could use 20 coins, or 2, as long as their values added up

to 100 cents. We also did some problems in which the number of coins that

could be used was specified, but the kind of coin was not: e.g., "Make $1.00

using 3 coins."

Considering each of these kinds of problems separately and practicing

each one on several different examples helped the students to develop the con-

fidence, the skill, and the organization to approach a more complex coin

problem like the one with which I began this section: "Using only two kinds

of coins, make $1.00 with 19 coins," This problem sets limits on the total

number of coins to be used, the amount of money they must add up to, and the

number of different kinds of coins that can be used. It does not specify what

kind of coins to use, but only that there should be two kinds.

Students' solutions to these more complex problems were organized using

the same chart described above, with extra columns for the total number of

coins and the numbers of kinds of coins when these conditions were part of the

problem. With the preliminary work we had done, they had both concepts and

strategies to bring to these problems; and both the concepts and the strate-

gies could also serve as a foundation for other mathematical work. They

ranged among naive, concrete, computational, and conceptual knowledge to pro-

duce a solution; the process of connecting these different kinds of knowledge

was facilitated by the routines for recording ideas that had been established

while working on the less complex problems.

Using Numbers in a Meaningful Way to
Illustrate the Principles of Multiplication

Another way to teach the processes involved in multiplying pairs of large

numbers in a way that relates concepts or principles to other ways of knowing
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mathematics is to use configurations of numbers themselves to indicate the

operations that are occurring. These symbolic representations of the process

are "alternative algorithms" that record each step of the operation more

explicitly than the conventional procedure. They are usually less efficient

as a procedure for getting an answer; they are also less familiar to students

and therefore often a source of distress when they are encountered in the

classroom. Once students have learned a "quick and easy" method for calcu-

lating the answer and have come to believe that the answer is what reall)

matters, they are understandably less tolerant of more cumbersome alterna-

tives. Alternative algorithms also cause difficulties when parents try to

help a child with his or her math homework. "That's not the way / learned

it" is a comment that can carry a confusing message to a child who is already

skeptical about what is going on in school.

Several pedagogical techniques can be used to avert this difficulty.

Within a traditional school situation, one of the most effective might be to

test children on their ability to demonstrate proficiency in using the more

explicit alternative procedures, giving "points" for the clarity of process as

well as for the accuracy of the answer. This strategy uses the institutional

structure of the classroom to convey the message that explicitness and clarity

in the procedure are at least as valuable as the right answer. I do not mean

to indicate here that the capacity to reproduce alternative algorithms that

have been taught should replace answers as the basis for iudging students'

understanding; rather, as in the other representations of the multiplication

process that have been described here, the learning of explicit procedures in

which the steps of an operation are clearly symbolized by the way numbers are

placed on the page is meant to be an occasion for learners to make connections

among different kinds of knowledge about particular mathematical principles.
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As with stories and pictures, I began my lessons on numerical symboli-

zation with one-digit by two-digit multiplications and focussed on the decom-

position of the two-digit number into tens and ones. The total in 3 groups of

86, for example, could be figured out in four steps and represented as

follows. (The arrows are meant to show the order in which each step is com-

pleted.) Step 1 illustrates decomposition. In Steps 2 and 3, each part of

the number is multiplied and then in Step 4 the product is composed using the

distributive law.

86 > 80 + 6 Step 1
x3
18 < 3 x 6 Step 2

+240 < 3 x 80 Step 3
258 < 18 + 240 Step 4

We did several multiplications in this way together as a class, with me writ-

ing on the board and the children doing more and more of the work on their

papers.

After several such examples, I raised a question about Step 3: "Why is

there always a zero on the end of the answer?" The students' responses ex-

pressed the observation that one of the factors in Step 3 always had a zero on

it. My "explanation" at this point again referred to money as a concrete

representation of place value8 and a realm in which students are likely to

have considerable intuitive knowledge about place value and trading. I posed

8This continuing reference to money may seem overly mercenary for classroom
work, but money is one of the few trading systems in our culture that uses
base 10. Other trading systems with which children are familiar are dozens
(base 12); minutes, seconds, and hours (base 60); and days and weeks (base 7)
but these do not easily map on to the conventions we have adopted for writing
large numbers. Many text books use metrics to illustrate these conventions,
but metric units of measure are not yet familiar enough to most American
children to provide a familiar representation of a concept.
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several problems of the following sort: What is 3 times 8 one-dollar bills?

What is 3 times 8 ten-dollar bills? 5 times 7 ones? 5 times 7 tens? I

represented their answers in two forms on the blackboard as follows:

5 x 7 ones = 35 ones 5 x 7 tens = 35 tens
5 x $7 = $35 5 x $70 = $350

I extended the problems to hundreds and thousands which we would get to

later in our work on multiplication.

5 x 7 hundreds = 35 hundreds 5 x 7 thousands = 35 thousands

5 x $700 = $3,500 5 x $7,000 = $35,000

From this work, we evolved "the zeroes rule" which stated that the product had

to have at least as many zeroes at the end of it as the factors. This rule

was a very useful tool in getting through meaningful representations of the

multidigit multiplication process using numbers; it enabled me to teach my

students to do computations using numbers in a way that directly represented

the quantities being operated upon.

The next step in this set of lessons focused on the principle of commute-

tivity of addition. Emphasizing this principle was intended to highlight the

meaning of the numbers and the operations and deemphasize the generation of a

mechanical procedure for computing the answer. I demonstrated several prob-

lems in which Step 2 and Step 3 were reversed to show that the answer came out

the same when the order of multiplication was changed, for example:

97 ---> 90 + 7 97 ---> 90 + 7
x4 x4

360 <--- 4 x 90 28 <--- 4 x 7
+28 <--- 4 x 7 +360 <--- 4 x 90
388 <--- 360 + 28 388 <--- 28 + 360

That Steps 2 and 3 could be done in either order did not seem to confuse any-

one, and several children were able to say why it made sense to them to be

able to switch them around by referring to the decomposition in concrete
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terms. In fact, the version in which the "tens" part of the number "as

multiplied first made more sense to them when they were able to put the

convention of "starting with the ones" aside. When you "take apart" a

two-digit number in order to read it, you think first of the tens and then of

the ones (i.e., 73 is seventy-three not three and seventy). I wanted them to

be able to explain that some parts of the procedure could be "switched around"

and it wouldn't make any difference to the answer, rather than just believing

me when I said it. I sometimes referred to a story or some draAngs so that

they had a picture of what the "switching around" looked like and to give them

an additional intuitive or concrete referrent for explaining why what we were

doing with the numbers makes sense. (cf. Davis, 1984, pp. 8-14.)

This explicit numerical representation for multiplying a two-digit number

by a one-digit number extended easily to one digit times three digit multipli-

cation and beyond: to one digit times four, five, and six digits. So, for

example, 3,652 x 8 would be:

3652 ---> 3000 + 600 + 50 + 2
x8

24000 <--- 8 x 3000
4800 <--- 8 x 600
400 <--- 8 x 50

+ 16 <--- 8 x 2
29216 <--- 24000 + 4800 + 400 + 16

After we did several of these together as a class and they did several

individually with success, I showed them the "short-cut" notation in which the

"answer" appears all on one line; that is, instead of writing:

we usually write:

38

x3
24 <--- 3 x 8

+90 <--- 3 x 30
114

38

x3

114
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in tno snort cut, vu Goes not get written down anywhere and 20 is symbolized

hy the little 2 up on top of the 3 (which is really 30). Making the transi-

tion from writing down the 2 and the 9 in the tens column under the line to

writing down the little 2 in the tens column above the problem is difficult

for several reasons. First of all, the children's knowledge of the multipli-

cation combinations is still shaky and trying to remember and add before writ-

ing anything down can be confusing. Second, and more closely related to the

issue of representing the operation that is occurring, is the difference

between what that "little 2" up above the given problem means in a multipli-

cation problem and what it means in an addition or subtraction problem.

"Working across the columns," that is, doing something with the three in the

units column to the three in the tens column, creates a very different

"traffic pattern" than those used in either addition or subtraction where work

in one column is completed entirely before moving on to the left. The "little

number" at the top of the tens column now means something different than it

did in addition or subtraction.

If, as Brown and Burton (1978) have claimed, children use visual cues to

figure out how to proceed and whether they are proceeding correctly through a

computation, it would not be surprising if errors like the following occurred

at this point by analogy with the procedures for addition:

A. 38

x3
94

B. 38

x3
154

In the first example, the child has used the three units to operate on the

carried "two," perhaps because it is the uppermost number in the configu-

ration, and then by multiplying 3 x 2, obtains six and adds three to get the

nine tens. In the second example, the child adds the carried two and the

three tens to get five and then multiplies by the three units to get 15 tens.

Either of these errors may be "corrected" by having children do a great deal
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of practice until a new "traffic pattern" is established, but this sort of

teaching never contains an explanation for why one multiplies the three units

by the three tens and then adds the carried two to get the correct answer.

The learner is not given a referent in the concrete or naive realm of knowing

that can act as a "check" on the mechanical procedures.

After teaching my students the form:

38

x3
24 <--- 3 x 8

+90 <--- 3 x 30
114

and then showing them how this could be "shortened" into the conventional

form:

38

x3
114

the most common error I encountered was:

38

x3

9024

This is quite a different sort of error than the carrying confusions described

above. This student was anxious to "get it all on one line" and missed an

essential aspect of conventional symbolization. The operation is carried out

correctly but the answer is incorrectly symbolized. What has happened here is

that 3 x 30 became 9,000 because there was not enough "room" in the tens place

of the answer for both the 9 of 90 (3 x 30) and the 2 of 24 (3 x 8). In order

to write all the "answers" on one line, one thing you can do is move over to

the left, that is, to put the 90 to the left of the 24. In order to read

these two answers, however, we apply the framework of place value, assigning

the name "thousands" to the fourth place over from the right. What gets

written down as 90 thus becomes 9,000 when it is read. I could discern from
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my conversations with the children who made this "mistake" that they

understood the principle of decomposition and were able to use it as a way to

multiply, but they wrote the results of their calculations in a way that did

not have the quantitative meaning they intended (cf. Greeno, Riley, & Gelman,

1984). They did not take account of the fact that in the hierarchy of mathe-

matical symbols, the way place value is represented by lining digits up frm

right to left is fundamental. Hence, it does make a significant difference
90

whether products are written one on top of the other like this: 24 or next to

the other like this: 9024. With or without a plus sign, the first configu-

ration suggests the addition of 90 and 24, the second does not. It is impor-

tant to note that the children who wrote down 9024 did not have the "miscon-

ception" that 3 x 30 = 9,000. They simply did not know how to symbolize the

8UM of 90 and 24. With a referent to quantity made explicit, learners are

able to decide for themselves whether it makes sense to write 9024.

One of the questions that often gets raised at this point in math educa-

tion circles is whether this particular error in symbolization would have

developed if I had not taught my class to do these kinds of problems by put-

ting the two products down separately rather than by "carrying" from the

beginning. I don't know the answer to that, but I do know that I've seen

children invent all sorts of similarly sensible but erroneous symbolizations

in classrooms where they were only taught the steps in the conventional algo-

rithm and directed to practice them over and over without any sense of why

they work. Children who have a well-developed sense that numbers stand for

quantities (and that multiplication is a matter of counting groups) know that

counting three groups of 38 will not get you anywhere near 9024. But this

sort of number sense takes a long time to develop, and its development is not

helped by teaching computational procedures in isolation from the meaning of
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operations. The child who sees 9,024 on his or her paper after completing the

two multiplications 3 x 8 and 3 x 30 faces a conflict in his or her own under-

standing. It does make some sense, and yet three groups of 8 and 3 groups of

30 would not add up to 9,024. It makes sense if they see 9024 as a row of

answers to 3 x 30 and 3 x 8 with no spaces in between. But it does not make

sense if they read 9024 as nine thousand twenty-four.

How is such a conflict to be resolved? We could tell such a child how to

resolve it, but the telling should respect the fact that both ways of looking

at 9024 do make some sense. If the teacher acknowledges that the answer 9024

does make some sort of sense, then the child who came up with it can see him

or her self as a sense-maker rather than as a mistake-maker. But one cannot

stop there and neglect to point out that this number can be interpreted in two

different and conflicting ways. Because of the kind of subject mathematics

is, the conflict between the two interpretations must be resolved. In the

process, the child can be challenged to build a new "sense-making" schema that

will turn up an answer without ambiguity. (Non-Euclidean geometries as well

as other powerful mathematical ideas got invented this way!) Recognizing the

conflict may even give learners a better appreciation for why we have adopted

the practice of writing the little "2" (from 24) up on top of the 3 in the

conventional algorithm instead of writing it underneath the line and thus give

them a framework for remembering to do it.

Acknowledging the child's conflict in understanding rather than seeing

this kind of situation as a right-wrong answer dichotomy is a way of looking

at mathematical knowledge that is very unusual in classrooms and textbooks.

It goes strongly against the grain of the way knowledge is usually organized

for teaching and learning in schools, but it also has ihcredible power for

giving the child a different picture of him or her self in relation to the

53 58



process of learning mathematics. If children can learn to say "that does not

make sense to me" and to tell their teachers what does make sense, and if

teachers can respond by acknowledging that there is some sense to what the

child says, it seems much less likely that so many children will "drop out" of

the study of mathematics because they perceive it as something they could

never really understand. It is true that some children can succeed for a

while in the subject just by learning to do computation even if they don't

understand what they are doing or why, but they probably won't get very far

beyond high school algebra. They probably also will not see mathematical

knowledge as useful or usable.

The use of numbers arranged in such a way as to make the multiplication

process more explicit becomes, of course, more cumbersome as the numbers get

larger. Yet it still seems worthwhile to illustrate the process that connects

the conventional procedures used on numbers with what one is actually doing to

the quantities involved. Numbers of more than one digit in both the multi-

plier and the multiplicand result in interesting alternatives for decomposi-

tion. If I were to multiply 352 x 82, for example, following the same

process outlined above for one-digit by two-digit multiplications, I could get

the following:

352 ---> 300 + 50 + 2 Step 1
x82

24600 <--- 300 x 82 Step 2
4100 <--- 50 x 82 Step 3

+ 164 <--- 2 x 82 Step 4
28864 Step 5

Steps 2, 3, and 4 require another kind of decomposition:

300 x 82
50 x 82
2 x 82

-->
-->
-->

(300 x 80) + (300 x
(50 x 80) + (50 x 2)
(2 x 80) + (2 x 2)

2)

Now each multiplication involves numbers that are simple multiples of 10 or

100. One need only attend to the leading digits and be sure that the product
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includes the appropriate

conventional way, the procedure

352
x82

number of zeroes. Written in a somewhat more

would look like this:

4 (2 x 2)
100 (2 x 50)
600 (2 x 300)
160 (80 x 2)

4000 (80 x 50)
+24000 (80 x 300)
28864

My students call this the "no-carry way" to do multiplication and many of them

favor it over the "carry way," which they tend to find confusing because it is

difficult to keep track of all the "little numbers" that accumulate at the top

of their work when they are multiplying by a number with two or more digits.

For several days, I presented my class with a multidigit multiplication

at the beginning of class which they could do in either "the carry way" or

"the no-carry way." Several did both and I encouraged them to compare their

work with classmates (which resulted in the correction of many times-tables

errors!) and I put both "solutions" up on the board. This activity evolved

into whole class discussions of the two methods and how they were or were not

related. For example, some students observed that

96 and 84
x84 x96

resulted in the same set of partial products if they did them the no-carry way

and different partial products if they did them the carry way. Some students

were eager and able to explain why, whereas others wondered "what would happen

if" they tried mixing the digits up to make other problems like:

69 or 86
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A lively discussion ensued about why these combinations turned up different

final answers than 96 and 84

x84 x96

In these discussions, students used principled knowledge to explain what they

were seeing. They were able to talk meaningfully about place value and order

of operations, even though they did not use technical terms to do so. I took

their experimentations and arguments as evidence that they had come to see

mathematics as more than a set of procedures for finding answers.

Conclusion

Throughout the course of all of the lessons described here, there were

several opportunities to observe students demonstrating mathematical under

standing. Greeno, Riley, and Gelman (1984) have argued that the case for

understanding is strongest if a child is required to generate new procedures

and the procedures ar consistent with mathematical principles. My students

had the opportunity to do that with stories, pictures, co_ns, and numbers and

on several occasions they invented procedures that indicated an awareness of

principles even though the principles themselves we never articulated.

In their stories and pictures, they decomposed quantities into groups of

groups in both conventional and unconventional ways and after multiplying with

groups, added partial products together appropriately. In solving the various

kinds of coin problems, they created multiple decompositions and recomposi

tions, applying the distributive law correctly to calculate the total amounts

of money indicated by their groups of coins. In generating the explicit

numerical products indicated by the placevalue decomposition of multidigit

multipliers and multicands, they were able to move the partial products around

and recombine them in ways that indicated the appropriate application of the

commutative and associative laws.
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Moving around among the concrete, naive, and computational realms and

making explicit connections among them, they indicated their "metaknowledge"

of the process of multiplication by producing performances that were system-

atically consistent with the principles that underlie this operation in a wide

variety of different contexts. Leinhardt (1985) observed in describing the

relationship among different kinds of knowledge of subtraction, "as competence

increases, naive knowledge and principled knowledge should converge and form a

basis upon which unique generative solutions can be formed and into which com-

putation procedures can be nested and legitimized."

The 1essons I have described here provide some evidence that this process

can occur within the context of classroom instruction. It is possible for

children to learn concrete and symbolic procedures to arrive at answers with-

out having understanding. By putting the emphasis in my teaching on the in-

vention of procedures rather than on the production of answers, this outcome

was less likely to occur.

Very few mathematics teachers or textbooks go through the process of

representing multiplication to children at the various levels I have de-

scribed. Most often, they proceed directly from concretely representing

single-digit multiplication like 7 x 6 as seven groups of six objects or seven

rows of siz dots on the board to teaching children the computational proce-

dures for multiplying 82 x 152 using the conventional algorithm. Sometimes

the grouping process is pictured in textbooks, but very little is said about

"groups" once children are multiplying with two numbers that are both bigger

than 10. After they have learned to use the conventional procedures to do

these multiplications, students are usually asked to "apply" their skills to

solving word problems like: "If baseball shirts cost $8.95 each, what would

be the total cost of 73 shirts?"
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But doing such problems does not necessarily indicate an understanding of

the algorithm. Children can learn to recognize problems like this as members

of a set of "word problems" to which the procedure for doing multiplication

should be applied (usually because they come at the end of the chapter on

multiplication), but they probably could not tell the teacher why multiplying

gets them the correct answer. If they understood that such a problem was ask-

ing them to find the amount of money in 73 groups of $8.95, they would prob-

ably also be able to answer more practical questions like: "If there were 900

dollars in the school budget for 73 baseball shirts, would we have enough

money to buy them?" Understanding multiplication as a process of counting by

grouping has at least as much practical value as being able to compute the

exact answer to 73 x 895 precisely using the conventional algorithm; a child

with only procedural knowledge of multiplication would be unlikely even to

recognize the school budget question as a "multiplication problem."

More important than its potential practical value, however, is the possi-

bility that such understanding could give children the Ponfidence to make the

transition from figuring out why arithmetic makes sense to figuring out that

they can do and understand higher mathematics. When mathematics begins to be

nothing more than a set of rules for manipulating symbols that "magically"

turn up the right answer, children stop seeing themselves as capable of figur-

ing out why one procedure for moving numbers around makes any more sense than

another. Once this happens the only succeasful learning strategy available to

them is to remember what the teacher or the book said you were supposed to do.

What gets into their memory then, is a list of rules that are not tied to-

gether in any way that would help them to use the right rule on the right

occasion.
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The more mathematics one is taught, the longer the list of rules to

remember grows. It would not be surprising if there were a point where it

just gets to be too much. For some children, learning the conventional pro-

cedure for the multiplication of large numbers is the beginning of the end;

others can remember everything up to the process for doing long division.

Some make it through remembering the rules for the addition and subtraction of

fractions, but the "invert and multiply" rule for dividing fractions is the

last straw. "Turning numbers upside down???" "How could that possibly make

sense?" It is not necessary for children to be able to explain every proce-

dure that is learned or used; what I am arguing for here is that students

learn that such explanations are possible.

Usually by the time they get through high school, many students (includ-

ing some who go on to become teachers) are confirmed in the belief that mathe-

matical rules generally do not make sense and that mathematics is an esoteric

body of memorized knowledge enjoyed by a small but strange minority. Because

there is hardly time in most teacher education programs to seriously challenge

these beliefs, many children are taught mathematics by teachers who see mathe-

matical knowledge as something much more limited than the complex relation-

ships among the four kinds of knowing described above. The mathematics text-

book is treated by these teachers like a cryptic document: Teacher and stu-

dent together engage in puzzling out "what IT wants you to do."

The dichotomy between familiar arithmetic computation and the principled

mathematics that mathematicians know and use becomes firmly set in this pro-

cess of student and teacher alienation from the subject matter. If, however,

teachers could be enabled to see the computational processes that are familiar

to them in relation to more sophisticated mathematical principles and in rela-

tion to their awn naive ways of understanding mathematical structures, '..:hey



might be more likely to become the allies rather than the enemies of

mathematicians in the campaign to make school mathematics more principled.

They could use what they (and many children's parents) recognize as "mathe-

matics" to teach the concepts that students will need to know if they are

going to continue to be successful in the subject beyond arithmetical proce-

dures.

Fourth graders can do and think mathematically. They have the capacity

to gather information, to organize it strategically, to generate and test

hypotheses, and to produce and evaluate solutions. They can talk about what

they are thinking, they can listen to and appreciate another student's proce-

dural way of understanding something, and they can invent problem-solving pro-

cedures that are both useful and sensible. What sort of help do children need

from adults in order to be able to do these things and to be confident in

their ability to do them? They need to be asked questions whose answers can

be "figured out" not by relying on memorized rules for' moving numbers around

but by thinking about what numbers and symbols mean. They need to be treated

like sense-makers rather than like rememberers and forgetters. They need to

see connections between what they are supposed to be learning in school and

things they care about understanding outside of school, and these connections

need to be related to tbe substance of what they are supposed to be learning.

They need to learn to do computation competently and efficiently without los-

ing sight of the meaning of what they are doing and its relation to solving

real problems. The lessons I have taught and described here suggest that it

is possible to do these things in conventional school classrooms.
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